- seminorm
- seminormi
English-Finnish mathematical dictionary. 2011.
English-Finnish mathematical dictionary. 2011.
Seminorm — Dieser Artikel erklärt neben den gleichbedeutenden Begriffen normierter Raum und normierter Vektorraum per Weiterleitung auch die Begriffe Norm (Mathematik), Vektornorm, Halbnorm (Seminorm), Operatornorm, Matrixnorm und Frobeniusnorm. normierter… … Deutsch Wikipedia
Nuclear space — In mathematics, a nuclear space is a topological vector space with many of the good properties of finite dimensional vector spaces. The topology on them can be defined by a family of seminorms whose unit balls decrease rapidly in size. Vector… … Wikipedia
Norm (mathematics) — This article is about linear algebra and analysis. For field theory, see Field norm. For ideals, see Norm of an ideal. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering. In linear algebra, functional… … Wikipedia
Normed vector space — In mathematics, with 2 or 3 dimensional vectors with real valued entries, the idea of the length of a vector is intuitive and can easily be extended to any real vector space Rn. The following properties of vector length are crucial. 1. The zero… … Wikipedia
Kolmogorov space — In topology and related branches of mathematics, the T0 spaces or Kolmogorov spaces, named after Andrey Kolmogorov, form a broad class of well behaved topological spaces.The T0 condition is one of the separation axioms. Definition A T0 space is a … Wikipedia
Locally convex topological vector space — In functional analysis and related areas of mathematics, locally convex topological vector spaces or locally convex spaces are examples of topological vector spaces (TVS) which generalize normed spaces. They can be defined as topological vector… … Wikipedia
Beschränkte Schwankung — In der Analysis ist eine Funktion f von beschränkter Variation (beschränkter Schwankung), wenn ihre totale Variation (totale Schwankung) endlich ist, sie also in gewisser Weise nicht beliebig stark oszilliert. Diese Begriffe hängen eng mit der… … Deutsch Wikipedia
Pseudometric space — In mathematics, a pseudometric space is a generalized metric space in which the distance between two distinct points can be zero. In the same way as every normed space is a metric space, every seminormed space is a pseudometric space. Because of… … Wikipedia
Gauge space — In topology and related areas of mathematics a gauge space is a topological space where the topology is defined by a family of pseudometrics.A space is uniformizable if and only if it is a gauge space. Examples * A metric space is trivially a… … Wikipedia
Metric (mathematics) — In mathematics, a metric or distance function is a function which defines a distance between elements of a set. A set with a metric is called a metric space. A metric induces a topology on a set but not all topologies can be generated by a metric … Wikipedia
Semi-Hilbert space — In mathematics, a semi Hilbert space is a generalization of a Hilbert space in functional analysis, in which, roughly speaking, the inner product is required only to be positive semi definite rather than positive definite, so that it gives rise… … Wikipedia